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Abstract. The Rhodes-Wohlfarth parameter extended to ferroelectrics by Tokunaga [J. Phys. Soc. Jap.
57, 4275 (1988)] is here analyzed within the Φ4 model. It is shown that it can be directly related with
the displacive degree of the transition as described by the ratio C/E0, between the non-local coupling,
C, driving the transition and the depth of the energy well, E0, associated with the distorted structure.
However, the Rhodes-Wohlfarth parameter becomes asymptotically constant as C/E0 decreases, i.e. for
systems closer to the order disorder limit. Under this viewpoint, the very limited range of values observed
for this experimental parameter is explained and is shown that, in general, it can only assess quantitatively
the character of the transition in rather displacive cases. The argument can be generalized to more complex
systems, and when applied to well known materials, a rough estimation of the displacive degree and the
relevant microscopic energetic parameters in rather displacive ferroelectrics is possible.

PACS. 64.70.Kb Solid-solid transitions – 64.90.+b Other topics in equations of state, phase equilibria,
and phase transitions dynamics (restricted to new topics in section 64)

1 Introduction

Recently, the so-called Rhodes-Wohlfarth parameter,
originally defined for ferromagnets, was extended by
Tokunaga [1] into the field of ferroelectrics. This factor
is generalized as:

R =
1
Ps

√
nkBCc−w

4π
(1)

where Ps is the saturated spontaneous polarization, Cc−w

is the observed Curie-Weiss constant, n is the density of
dipolar units and kB is the Boltzmann constant. For a set
of dipoles with concentration n, the Curie constant would
be related with the saturated polarization of the system,
Pc, through:

Cc−w =
4πP 2

c

nkB
· (2)

Thus, the parameter R defined in (1), can be interpreted
as the ratio Pc/Ps between a polarization, Pc, consistent
with the observed Curie constant if the system is taken as
a set of permanent dipoles and the actual observed satu-
rated polarization, Ps. R can be determined from dielec-
tric data for any ferroelectric material, the only ambiguity
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being the value of n, which depends on the choice of the
dipolar unit. Two obvious (in general different) choices are
a single molecule or the unit cell. In reference [3] the first
choice was made. Here, on the other hand, we will con-
sider the polarization within a unit cell as the basic rigid
dipole for equation (2), i.e. n is the inverse of the unit cell
volume. We consider this second choice more adequate
for a comparison with the Φ4 model which requires a sin-
gle degree of freedom per unit cell. In the case of several
modes (dipoles) per unit cell relevant in the transition,
this is equivalent to consider as single mode their linear
combination corresponding to the normal mode of lowest
energy, this linear combination being directly related to
the structural distortion in the transition.

According to its definition, R would be expected to
be close to one in order-disorder systems and larger in
displacive transitions [1]. This is in accordance with the
well-known fact that the Curie constant is typically some
orders of magnitude larger in displacive systems. How-
ever, although R is proportional to the square root of the
Curie constant, a survey of the value of R through well
known ferroelectrics indicated a rather small range of val-
ues [2]. Indeed, in well known order-disorder systems R is
approximately one, but in typical displacive systems only
increases up to values of the order of 2 or 3 (see Tab. 1).
Tokunaga attributed such small difference to the effect of
the long range electrostatic interactions [2]. On the other
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Fig. 1. Idealized scheme of the temperature behaviour of the
Landau quadratic coefficient above Tc in the Φ4 model derived
from the results in reference [7] for C/E0 = 1. The dashed
line corresponds to the extrapolation to 0 K of the A(T ) linear
behaviour above Tc.
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Fig. 2. Behaviour of α, β and α/β as a function of C/E0 in
the Φ4 model obtained from Monte-Carlo simulations.

hand, some scepticism on the possibilities of the factor R
for assessing the order-disorder degree in ferrolectrics has
been expressed by Scott [3]. Further discussions can be
found in references [4,5].

In the present work Monte-Carlo simulations for the Φ4

model are used to revise the meaning and relevance of the
Rhodes-Wohlfarth factor as a possible empirical parame-
ter measuring the order-disorder degree of ferroelectrics.

The Φ4 hamiltonian is the simplest model that con-
tains the essential ingredients to describe a rather real-
istic structural phase transition in the sense that goes
beyond the spin (order-disorder) system or the single un-
stable mode (displacive) picture. The character of the re-
sulting transition can be considered intermediate between
the ideal order-disorder and displacive types. It has been
widely used for the microscopic description of structural
phase transitions, and in particular, ferroelectrics. The Φ4

hamiltonian can be parameterized so that the ratio be-
tween the non-local coupling energy C and the depth of
the energy well E0 is the only free parameter to charac-
terize the system [6,7]. This microscopic parameter gov-
erns the order-disorder/displacive degree of the transition,
since its two limits (zero and infinity) correspond to the
ideal order-disorder and displacive scenarios, respectively,

which in this framework clearly become abstract mathe-
matical limits of the more “realistic” Φ4 system.

If the empirical parameter R defined by equation (1)
would be somehow able to distinguish between order-
disorder and displacive systems in the sense that they are
closer to one or the other limit, it should be strongly corre-
lated with the mentioned C/E0 parameter that character-
izes the Φ4 hamiltonian. This correlation is here analysed
using the results of Monte-Carlo simulations. Thus, the
significance of the Rhodes-Wohlfarth parameter as a sig-
nature of the displacive or order-disorder degree of the
transition is checked. It will be shown that in general only
in rather displacive systems the correlation can be consid-
ered significant and can be used to obtain a rough estima-
tion of the energetic parameters of real systems.

2 The Rhodes-Wohlfarth parameter
in the 3D Φ4 model

The Φ4 model consists of a 3-dimensional lattice of local
continuous variables under the influence of local double
wells and harmonic couplings with neighbouring sites. The
Hamiltonian of the three-dimensional Φ4 model can be
expressed in the form [7]:

H =
∑
i

E0

(
x2
i − 1

)2
+

1
2

∑
i

NN∑
j

C (xj − xi)2 . (3)

Only nearest-neighbour interactions given by the coupling
constant C are considered and E0 represents the energy
barrier between the two local wells for the site variable x.
The units of the local variable are normalized to have the
minima of the on-site potential at ±1. Only one param-
eter in the Hamiltonian (3) is relevant, the other being
fixed by the chosen energy units. In fact, the ratio C/E0

can be taken as a single model parameter and the limits
C/E0 → ∞ and C/E0 → 0 represent the ideal displacive
and order-disorder limits respectively.

The Landau free energy per site for the Φ4 model can
be expressed in the usual form:

f = f0 +AQ2 +BQ4 + ... (4)

in terms of the normalized order parameter Q given by
Q = (1/N)

∑
i xi, which becomes ±1 in the ground state

at T = 0 K.
According to recent Monte-Carlo simulations [7] the

temperature behaviour of its Landau quadratic coefficient
A(T ) in equation (4) follows the idealized scheme repre-
sented in Figures 1 and 2. In the displacive limit, with
C/E0 much larger than 1, the Landau linear behaviour of
the quadratic coefficient is maintained down to the lowest
temperatures, so that the extrapolation to 0 K of its lin-
ear behaviour above Tc permits a good estimation of the
value of E0(A(T → 0) = −2E0), while for smaller values
of C/E0, as the case depicted in Figure 1, the extrap-
olation of the linear behaviour above Tc underestimates
the value of E0 by the factor β indicated in the figure.
This factor β is C/E0 dependent and follows a smooth
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Fig. 3. Rhodes-Wohlfarth factor in the Φ4 model as a function
of the displacive degree C/E0.

curve (Fig. 2) becoming asymptotically zero and one in
the order-disorder and displacive limits, respectively.

Let us now consider the simplest Landau free-energy
(per unit volume) for a proper ferroelectric. For a proper
comparison with the potential (4) it is necessary to express
the usual Landau potential (f = f0 +aP 2 + cP 4) in terms
of an analogous normalized order parameter Q defined as
P/Ps so that Q(T = 0) = ±1 irrespective of the displacive
or order-disorder character of the transition. Thus,

f = f0 +
1
2

4π
Cc−w

(T − Tc)P 2
s Q

2 +
1
4
bP 4

s Q
4 (5)

where the expected relationship between the Curie con-
stant and the quadratic coefficient of the potential has
been explicitly written. Comparison of the extrapolation
for T = 0 K of the quadratic coefficients of the two equiv-
alent Landau expansions (4) and (5) for T > Tc gives the
relation between the microscopic energetic well (per unit
volume) and experimental macroscopic parameters of the
ferroelectric:

−2E0β(C/E0) = −1
2

4π
Cc−w

TcP
2
s . (6)

On the other hand, the transition temperature of the Φ4

model can in general be written as

kBTc = α(C/E0)4C (7)

where α is a factor dependent on C/E0, which varies from
2.275 in the order-disorder limit to 0.65 in the displacive
one [6] (see Fig. 2).

From equations (6, 7), taking as unit volume the one
associated to the “local mode” or the smallest dipolar unit,
the parameter R becomes:

R =

√
C

E0

α

β
· (8)

Taking the actual behaviour of α and β with C/E0 from
the results in [7] depicted in Figure 2, the variation of the
Rhodes-Wohlfarth factor as a function of the displacive
degree C/E0 of the system can be estimated and is shown

in Figure 3. The factor R is slowly varying for small val-
ues of C/E0, since the β approaching zero compensates
the decrease of C/E0. However, in contrast with the argu-
ments in [1,2], the factor can be smaller than one in the
order-disorder regime. Close to the displacive limit, for
C/E0 larger than 100, as β approaches 1 asymptotically,
the Rhodes-Wohlfarth factor becomes approximately pro-
portional to

√
C/E0. The factor β is the cause that R

maintains a value of the order of one for a large interval
of C/E0 values, while for C/E0 ≈ 100, R is still about 5.
Hence, one should expect R to be quite insensitive to large
differences in C/E0 when the systems are rather order-
disorder as pointed out in reference [4]. Only in the dis-
placive region, when C/E0 > 1, the parameterR may have
adequate resolution to assess quantitatively the displacive
degree. So in some sense, it would be better to speak of
the Rhodes-Wohlfarth factor as a parameter measuring
the “displaciveness” of the system. This also explains the
limited range of observed values. One should take into
account that cases with C/E0 much larger than 10 are
quite improbable: for usual elastic energies, E0 would be
so small that the quantum zero-point energy would be
enough to inhibit the phase transition.

3 Discussion

The qualitative features of the results above can be extrap-
olated to real systems. In the case of interactions between
further neighbours and anisotropy of the couplings (Jij)
between the local modes at cells i and j, the parameter
C can be interpreted as an effective mean coupling given
by C = 1

3

∑
j Ji,j as this is the parameter to be consid-

ered in a generalized expression analogous to equation (7)
(in the mean field approximation kBTc = 4C, with C de-
fined in this form [6]). On the other hand, if the Landau
hypothesis on the temperature linearity of the quadratic
coefficient would be fulfilled for a real system down to
0 K, the same arguments of the previous section would
lead to the relation R =

√
C/E0. Analogously as in the

Φ4 model, this “mean field” relation is to be corrected as
in equation (8) by the factors α and β expressing the de-
viations of Tc and the quadratic Landau coefficient from
their mean field/Landau behaviour. Hence, equation (8)
can be considered to have a general validity, the param-
eters α and β taking care of the particularities of each
system. In complex systems the variation of α and β with
respect to the order-disorder degree of the transition is
expected to follow the general trends observed for the Φ4

model and depicted in Figure 2: the two coefficients α and
β should vary smoothly between the two asymptotic val-
ues for the order-disorder and the displacive limits (0 and 1
respectively for β). Indeed, some preliminary Monte-Carlo
calculations in realistic models with 3-component local or-
der parameters simulating a cubic perovskite confirm this
assumption. The resulting Rhodes-Wohlfarth factor R as
a function of C/E0 has the same form as in Figure 3. The
actual function for intermediate values may change and
depends on the additional parameters of the model, but
the asymptotic behaviour at high and low C/E0 values is
maintained.
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Table 1. Curie constant, saturated polarization, transition temperature and cell density for representative proper ferroelectrics.
Resulting Rhodes-Wohlfarth factor R and estimated values of C/E0, E0 and C, derived as explained in the text.

Cc−w(103 K) Ps(C/m
2) Tc(K) n(1028m−3) R C/E0 C(meV) E0(meV)

BiSI 190 0.070 88 0.2700 3.58 16 2.6 0.16
SbSBr 120 0.075 93 0.3127 2.85 9.1 2.6 0.29
KNbO3 242 0.3 435 1.536 2.25 4.4 12 2.7
BaTiO3 173 0.26 393 1.577 2.22 4.2 11 2.6
Cd2Nb2O7 100 0.055 185 0.0898 1.91 2.8 4.9 1.8
LiTaO3 1600 0.5 938 0.3173 1.58 1.7 23 14
PbTiO3 410 0.66 763 1.582 1.35 1.0 18 18
SbSI 233 0.25 295 0.2781 1.13 0.33 5.6 17
TGSe 4.05 0.030 295 0.1505 0.91 0.068 4.0 59
TGS 3.20 0.028 321 0.1576 0.89 0.051 4.1 80
NaH3(SeO3)2 1.6 0.030 194 0.3441 0.86 0.039 2.4 62
Pb5Ge3O11 10.4 0.046 450 0.1022 0.78 0.015 4.8 320
TSCC 0.058 0.0027 128 0.06094 0.77 0.012 1.3 110
KNO3 5.6 0.081 401 0.4194 0.66
KH2PO4 3.1 0.050 123 0.2590 0.63
TGFB 2.24 0.034 343 0.1573 0.61
NH4HSO4 0.25 0.008 270 0.05662 0.52
(NH4)2SO4 0.029 0.0062 224 0.1768 0.40

Hence, in general, being aware of the oversimplification
and limits of the discussion above, the function in Figure 3
can be used to roughly estimate the C/E0 value for real
materials and using the corresponding functions for α and
β (Fig. 2), derive the estimated values ofC and E0. The re-
sults for a set of representative proper and pseudo-proper
ferroelectrics are shown in Table 1, where the values of
Curie constants and saturated polarizations have been
taken from reference [3] and most of the compounds listed
in this reference have been included. We have, however,
excluded clear anomalous cases as Rochelle salt and those
ferroelectrics that have an intermediate incommensurate
phase. It can be seen that C/E0 can vary from values as
large as 16 in a well known displacive system as BiSI,
to values as low as 10−4 in typical order-disorder sys-
tems as (NH4)2SO4, while the parameter R only varies
between 0.4 to 3.6. Obviously, as discussed above, these
numbers loose ground as one goes into the order-disorder
regime, so we have omitted the estimation of E0 and C for
C/E0 < 10−2. Only in the case of rather displacive sys-
tems one can expect reasonable results. Indeed, the values
of E0 obtained here for the perovskites can be compared
with those predicted by ab initio calculations. According
to [8], E0 for BaTiO3, KNbO3 and PbTiO3 would be 15,
11 and 51 meV per unit cell, respectively. The values in Ta-
ble 1 are systematically smaller but with deviations that
do not reach the order of magnitude. For lead titanate,
which is the most adequate for the comparison as, in con-
trast with the other perovskites, it only exhibits a single
phase transition with only weak first order character, the
estimation of E0 is closer to the ab initio value. The agree-
ment is quite reasonable considering the roughness of the
model and the fact that ab initio E0 values are also sub-
ject to large uncertainties, as they are quite sensitive to
cell parameters which are underestimated by LDA calcu-
lations. Changing the cell parameter within its estimated

error can be enough to change the ab initio E0 value by
factors as large as 4 or 5 [9].

4 Conclusions

The interpretation of results from Monte-Carlo simu-
lations of the Φ4 model allows to relate the Rhodes-
Wohlfarth parameter (R) and the displacive degree of the
transition C/E0. As the variation of R as a function of
C/E0 is very small for order-disorder systems the param-
eter R cannot distinguish between quite different order-
disorder regimes. On the other hand, in the displacive
region, the sensibility of the Rhodes-Wohlfarth parame-
ter to changes of the displacive degree of the transition
allows a rough estimation of fundamental microscopic pa-
rameters (C,E0) from experimental macroscopic data.
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